
High-Order Semi-Discrete Central-Upwind Schemes

for Multi-Dimensional Hamilton-J cobi Equations

Steve Bryson* Doron Levy t

August 8, 2002

Abstract

We present the first fifth-order, semi-discrete central-upwind method for ap-

proximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike
most of the commonly used high-order upwind schemes, our scheme is formulated

as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-

Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number

of space dimensions. A theorem establishing the monotonicity of these fluxes

is provided. The spacial discretization is based on a weighted essentially non-

oscillatory reconstruction of the derivative. The accuracy and stability properties

of our scheme are demonstrated in a variety of examples. A comparison between

our method and other fifth-order schemes for Hamilton-Jacobi equations shows

that our method exhibits smaller errors without any increase in the complexity of

the computations.

Key words. Hamilton-Jacobi equations, central schemes, semi-discrete schemes, high

order, WENO, CWENO, monotone fluxes.
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1 Introduction

We are interested in approximating solutions of multi-dimensional Hamilton-Jacobi (H J)

equations of the form

¢bt + H(V¢) = O, _= (xl,...Xd) E N d, (1.1)

where ¢ : _b(i, t), and the Hamiltonian, H, depends on V¢ and possibly on x and t.

Solutions of (1.1) develop discontinuous derivatives even for smooth initial data. This
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loss of regularity presents difficulties both in the analysis of these equations as well as

in numerically approximating their solutions. Significant advances in the theoretical

understanding of the HJ equations were achieved in the last two decades. Most notable
is the introduction of the so-called "viscosity solution" which pro_4des a consistent def-

inition of a weak solution of (1.1) past the time where the discontinuities develop. See

[2, 7, 8, 9, 10, 14, 25, 26] and the references therein.
In spite of the large number of applications for HJ equations, there has been very

little activity in numerically approximating their solutions. This is surprising in partic-

ular given the equivalence between the HJ equations and hyperbolic conservation laws,

and the flourishing field of numerical methods for conservation laws. Converging first
order methods for the HJ equations were introduced by Souganidis in [33]. High order

upwind methods were introduced by Osher, Sethian and Shu in [31, 32]. The schemes in

[31, 32] were based on an "essentially non-oscillatory" (ENO) reconstruction by Harten

[13] and a monotone numerical flux. A more compact upwind scheme which is based on

a weighted ENO (WENO) reconstruction is due to Jiang and Peng [15]. WENO recon-

structions were originally introduced in the context of numerical schemes for hyperbolic

conservation laws in [16, 29]. They increase the order of accuracy by using wider stencils

in smooth regions while automatically switching into one-sided stencils in regions that

include singularities. All these reconstructions include nonlinear limiters in order to

control the spurious oscillations that might develop in the solution. For extensions to

unstructured grids see [1, 34].
A class of Godunov-type approximations for HJ equations was recently introduced

by Lin and Tadmor in [27, 28]. Their first- and second-order central schemes were
based on the first-order Lax-Friedrichs scheme [11] and the second-order Nessyahu-

Tadmor scheme [30] for approximating solutions of hyperbolic conservation laws. Cen-

tral schemes incorporate internal averaging over discontinuities and hence they do not

require Riemann solvers. Moreover, systems can be solved without a characteristic de-

composition, and this makes central schemes simple, robust, and particularly suitable
for treating complex geometries. We developed in [4] an efficient version of the central

schemes of [27, 28] for multi-dimensional HJ equations. Our first- and second-order,

non-oscillatory, non-staggered schemes were designed to scale well with an increasing

dimension. Efficiency was obtained by carefully choosing the location of the evolution

points and by using a one-dimensional projection step. In [5, 6] we introduced third-

and fifth-order fullv-discrete central schemes, which were the first central schemes for

HJ equations of accuracy greater than two. High-order accuracy was obtained using

a suitable high-order WENO-type reconstruction. We would like to note that ENO

and WENO interpolants were already used in central schemes for conservation laws

[3, 22, .93, 24].
One way to improve the above schemes [4, 5, 6, 27, 28] is to use semi-discrete meth-

ods to reduce the numerical dissipation. In principle, one expects to obtain a semi-

discrete scheme from a fully-discrete scheme in the limit as At --_ 0. Unfortunately,

the fully-discrete schemes in [4, 5, 6, 27, 28] blow up in that limit. A different strategy
is to consider at every grid point, more precise information regarding the local speed

of propagation, which can then be used to develop a different class of fully-discrete

approximations that. do enjoy a semi-discrete limit. An estimate of the local speed of
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propagation at every grid point can then be used to determine new points where the
solution is evolved to the next time step. The distance of these evolution points from the

original grid points is proportional to the time step At, and hence it is possible to ob-
tain a semi-discrete scheme in the limit At --_ 0. This strategy was first used to develop

semi-discrete central schemes for hyperbolic conservation laws: a second-order method

was developed by Kurganov and Tadmor in [21], and a third-order method by Kurganov

and Levy in [18]. Semi-discrete schemes for HJ equations were then introduced in [20],

and further improved in [19] by utilizing a more accurate estimate of the local speed of

propagation, hence reducing numerical dissipation. We would like to stress that both

schemes [19, 20] are only second-order accurate.
In this paper we present fifth-order, semi-discrete, Godunov-type, central schemes

for HJ equations. These are the first high-order semi-discrete central schemes for HJ

equations.1 These schemes are generated by considering a general formulation of semi-
discrete schemes along the lines of [19, 20], and augmenting it with an appropriate

high-order WENO-type reconstruction.
The structure of this paper is as follows. In Section 2 we develop a one-dimensional

fifth-order semi-discrete scheme. In the semi-discrete limit, At --_ 0, the fifth-order

WENO interpolant we obtain turns to be identical to the one used in upwind methods

[15]. The flux we use is the Kurganov-Noelle-Petrova flux [19], or a variant of the

simpler Kurganov-Tadmor flux [20]. We state a theorem establishing the monotonicity
of these fluxes, the proof of which is left to an appendix. We observe that for the

one-dimensional linear advection, our method boils down to an upwind scheme with

a Lax-Friedrichs flux. In Section 3 we generalize the method to an arbitrary number

of space dimensions, writing out the schemes explicitly for two and three dimensions

in Section 3.2. We conclude in Section 4 with several numerical examples in one, two

and three space dimensions that confirm the expected order of accuracy as well as the

high-resolution nature of our scheme. We compare the results of these numerical tests
with our fully-discrete fifth-order scheme [6] and with the scheme of Jiang and Peng [15].

Our numericM results show that the new method we present in this paper has stability

properties that are equivalent to those of [15]. The relative L 1 errors we obtain in all
our simulations are consistently smaller than those in [15], in some cases as much as an

order of magnitude smaller.

Acknowledgment: The work of D. Levy was supported in part by the National Science

Foundation under Career Grant No. DMS-0133511.

2 A One-Dimensional Scheme

2.1 Semi-Discrete Central Schemes for HJ Equations

Consider the one-dimensional HJ equation of the form

¢_(x, t) + H (¢_) = 0, x _ R.

1high-order is assumed to be an order greater than two.

(2.1)
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Figure 2.1: The regions considered in Godunov-type central schemes. The solution is
evolved at cc_+ a_At. The solution _+a is obtained by averaging _(xi ± a_At, t_+a).

\¥e are interested in approximating solutions of (2.1) subject to the initial data ¢(x, t =

0) = ¢0(x). We briefly review the construction of semi-discrete central schemes for

(2.1) presented in [19] (see also [20]). For simplicity we assume a uniform grid grid in

space and time with mesh spacings, Ax and At, respectively. Denote the grid points

by z_ =iAcc, t _ = nat. Let p,_ denote the approximate value of q5 (z_, t_), and at a
fixed time t _ let c2'_denote the approximate value of the spatial derivative _ (z_, t_). We

define the forward and backward differences A+_i := Pi+l - _ and A-_ := p, - P_-I-

Assume that the approximate solution at time U, p] is given, and that a continuous

piecewise-polynomial interpolant _?(x, t _) was reconstructed from c2_. The construction

of _(x, t _) will be addressed below. At every grid point x_ we then estimate the maximal

speed of propagation to left, a + and to the right, a_-. For a convex Hamittonian, these

one-sided local speeds of propagation are estimated by

a+ =max{H,(__),H,(_,+),O}, aU__lmin{H'(_:-),H'(,_:+),O}l. (2.2)

Here, _'i+ are the one-sided derivatives, defined as

_2:+ := lim _5_ (xi + ai_At t_).
Ate0

Remark. Our sign convention in the definition of a_ in (2.2) differs from [19]. This

choice of signs simplifies the derivation of the scheme in the multi-dimensional setup.

We evolve _ according to (2.1) at the evolution points z, + a[At. The time step,

At, is chosen so that the reconstruction is smooth at. these points (see Figure 2.1). A

Taylor expansion in time of 22 (z_ ± a_At, t _+_) results with

© (z_ + a_At, t_+_) = % (z_ + a_At:t'_)-AtH (_ (z_ ± a_At, t _))+0 (At 2) .(2.3)

A weighted average is then used t.o re-project _3(x_ ± oSAt, t_+_) onto the original grid

point x_,

_+_ a+ (x_ aTAt, t _+_) a{ =22(x_+a+At.t_+a). (2.4)
- a? + a; 22 - + +
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A fully discrete central scheme is finally obtained by substituting (2.3) into (2.4)

B - t na+ (%5(xi_ar(At, t n) AtH(%5_(z__aiA t ))) (2.5)
_ aT+a;

a-( a+At, t _) AtH(%5_(x_+a+At.t'_)))+-- -
a_+ + a_-

*At =4- and assuming
Utilizing the Taylor expansion %5(xi -4- a_At, t') = %5(xi,t _) -4-ai za p_,

that _? satisfies the interpolation requirements p_ = %5(x_,t_), equation (2.5) can be

rewritten as

a+a:[ [%5+_ %5_-] (2.6)
_+1 =_+Ata++a[

- t n
At [a_(H(j2_(x_+a_At,C))+a+H(%5_(z__a_At, ))].

a+ + a_-

Here -4-c2_ denotes the one-sided reconstruction of the derivative at. x_. A Godunov-type
semi-discrete method for approximating the solution of (2.1) is obtained by taking the

limit At ---+0 in (2.6) (see [19, Eq. (3.44)])

a+a; (_:+- p:-). (2.7)
d 1 [a_(H(p,,+)+a+H(p,()]+a++a______ _-_i (t) - a[ + a;

Even though the flux on the right hand side of 2.7 was originally presented in [19],

Kurganov et. al. did not investigate its properties. We now state a theorem establishing

the monotonicity of this flux. The proof is left to the appendix.

Theorem 2.1 Assume that H E C 2 is convex. Then

a+a_---_ (u + - u-) ,1 [a_H(u+)+a+H(u-)] a++a -
H KNP (u +, u-) -- a+ 45 a-

is a monotone flux, that is H I_NP is a no_-increasin9 function of u + and a non-

decreasing function of u-.

Remarks.

.
The derivation of the semi-discrete scheme (2.7) does not depend on choice of

interpolants %5,so long as they are smooth at x_ + a_At during the time interval

It_, t_+l]. The spatial order of accuracy of the scheme is determined by the
accuracy of the reconstruction of %5as well as on the accuracy of the ODE solver

used to solve (2.7). A suitable high-order reconstruction will be presented in
Section 2.2 below. To be precise, the scheme (2.7) does not require the

construction of the interpolant %3.All that is required is a reconstruction of the

point-values of the derivatives %5,4-.
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Figure 2.2: The three interpolants used for the fifth-order reconstruction _'i+. In this

example, because of the large gradient between X_+l and xi+2, the interpolant _- will

have the strongest contribution to the CWENO reconstruction at xi+,.

2. In order to economize on storage space, and sometimes also reduce the

computations, it is possible to replace a + and a S with

a, = max {IH' (c2'i-)I ,IH' (_21+) I} • In this case, (2.7) becomes

ai

d 1 [H(<+)+H + -<-). (2.s)

This simpler formulation was presented by Kurganov and Tadmor in [20, Eq.

(4.10)]. We denote the right hand side of (2.8) by -H KT (_'_+, _'_-).

As an immediate consequence of Theorem 2.1, we have

Corollary 2.1 If H E C 2 is convex, then H KT (u +, u-) is a monotone flux.

2.2 A Fifth-Order Scheme

In order to obtain a fifth-order scheme from the general semi-discrete formulation (2.7),

we need a fifth-order approximation of the derivative p' and a suitable ODE solver. A

central-upwind interpolant at x_ starts with a central interpolant defined either on the

interval [x_, Xi+I] for a right-biased reconstruction, or [&-l, x_] for a left-biased recon-
struction. This central interpolant is then evaluated at the location x_+, := x_ + tax,

where 7 is a parameter introduced for notational convenience. For the semi-discrete

scheme (2.7) we take r = a+At for the right-biased interpolant, and 7 = a-�At for the

left-biased interpolant.
For the right-biased interpolant at x_+, (7 = a+At) we use three cubic interpolants

t+ , •cpk,_+_, k = 1, 2, 3, defined on the stencil {xi-a+k ..., xi+k} Here

,+ 1[ (2.9)_,_+" - 6Ax (1 - 3r2)_p_-2 + 3(-2 + 2r + 3r2)_-,

+3(1 - 4r - 3r2)_, + (2 + 6r + 3r2)_i.1],

,+ 1 [_92,i+" - 6Ax (-2 + 6r - 3"r2)_-1 + 3(-1 - 4r + 3r2)q&

+3(2 + 2r - 372)_+a + (-1 + 372)p_+2],
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t+ ,[6Ax (-II + 12_-- 3T2)_p_+ 3(6 - 10T + 3_m)_+i

+3(-3 + 8T -- 3V2)V_+2 + (2 -- 6_- + 3_-2)oYi+3]

t+ O,
A straightforward computation shows that Vk, _k,_+¢ = _ (xi+,)+ 0 ((Ax)a). Also

the following linear combination is a fifth-order approximation of p'_+

3^t+ E t+_,+_.: ck_k,,+_-= _(_+,) + 0 ((_?)
k=l

provided that the constants ck are taken as

1 15T 2 + 10T - 6 - 1207-3 + 120T 4

Cl 20 3_-2 - 1 '

1 720T 6 -- 1080 "rs + 660"r4 + 60T3 -- 81_-2 - 64_" + 24

c2 = 20 (m-2- 1)(2 - 6_-+ 3rD '
1 --15v 2 + 4 + 120T 4

C3 = 20 2 - 6T + 3_ 2

t+
In the limit T --* 0, #% := lim,_0 _k,,+¢ = -_(x_) + O((Ax)3), with

_i,+ _ 1 (_-z - 6_i_, + 3_i + 2_pi+1),
6Ax

,,+ 1 (-2_9i_a - 399_+ 6_i+1 - _9i+2),
5v2,_ - 6Ax

_+ _ 1 (-11_, + 18_,+, - 9_,+2+ 2_,+_).
6Ax

A right-biased fifth-order interpolant at x_ is therefore given by

3 ,+ 3 ,+ 1 ,+ 0 (2.10)
_'i + = -_-'_1,i + -_2,i + -'_3,i = -_X_ (xi) + 0 ((L-_X)5) •

By symmetry, for the left-biased interpolant (T = a_At) we use three cubic inter-
_'- k = 1,2,3, this time defined on the stencil {Xi-4+k,...,Xi-l÷k}' In thepolants _,{+_,

l-

limit T ---*0, _-_ := lim._.o c2k,i+. = _(xi) + O((AX)3), where

1
/--

_1 ,i -- 6Ax
1

f--

_2,i -- 6Az
1

I--

_3,i -- 6Ax

(2_{-3 -- 9pi_z + 18_i-_ - llps),

(--_{-2 +6_i-1 -3_ - 2_+_),

(2___ + 3_i - 6_,+_ + _+_).

In this case

1 , 3 ,
_',- = _17, + =o_

3 l- 0 (2.1_)
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In order to suppress spurious oscillations, the coefficients in _'i+ are replaced by nonlinear

weights, which are set as to preserve the order of accuracy of the reconstruction in

smooth regions while automatically switching to the appropriate stencil in regions that
contain discontinuities. To this end we define the convex combination

3 3

,i± x--" w ± . ,± ± = 1. (2.12)

k=l k=l

In smooth regions w + .-_ - .._ c+ = c; 3/10, w + _ w_,_ _ c+ = c_- = 1/10 and1,i W3,i "_ 3,i t±

W ±2,__ c_ = 3/5 so the order is of the order O ((Ax)5). When the stencil supporting _k,/
contains a discontinuity, the weight of the more oscillatory polynomial should vanish.

Following [16, 29], these requirements are met by setting

4- ±

w e wk,_ ,± ck (2.13)
_"--E__4-'_,, _" = (_+s_,_)p'

where k,1 E {1,2,3}. We choose e as 10 .6 to prevent the denominator in (2.13) from

vanishing, and set p = 2 (see [16]). The smoothness measures Sk_/ should be large when

is nearly singular. Following [16], we take Sk_,_to be the sum of the L2-norms of the
i±

derivatives on the stencil supporting _k,_- If we approximate the first, derivative at x/

by A+_//Ax, the second derivative by A+A-_±,/(Ax) 2, and define the smoothness

measure

j=r j=r+l

then for the right-biased interpolant we have S +_,_= S_ [-2, 01, S +2,_= S_ [-1 1] and

S + = S/[0, 2]. For left-biased interpolant we have Si-/ = S/[-3, -1], S_-./ = S_ [-2, 0]
3,i ' '

and S_,_ = S_ [-1, 1]. We use the notation

_'4- = reconstruct_c/(+, 09), (2.15)

_/ } for all i from data _s_ at time t _, as givento denote the computation of the array { '4-

by (2.12).
The following algorithm summarizes our fifth-order semi-discrete algorithm for ap-

proximatinng the solution of (2.7). The time integration is performed with a fourth-order

strong stability preserving (SSP) Runge-Kutta scheme [121.

Algorithm 2.1 Let F (_'_-,_'_+) denote the right hand side of (2.7). Then at each grid

node i,

l- l+_o = reconstruct__' (-, _) , _0 = reeonstruct__' (+,'_')

_,_ = _- + -1:,tF (_;- _;÷)
2

_i- = re_o._tr_et__'(-, _(_), _? = _econstr_ct__'(+,_(_)
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_(2)

/--

_2

951 ,1, 5000At F ,10890423Aty (_o-,_ +) + + -- (_'Z _+)25193600 1---_ _t J 7873

= reconstruet__' (-, @2)), _'2+ = reconstruct_p' (+, p(2))

_(3)
,- ,+ 4806213 (1)

53989 pn 102261 AtF (_o , _o ) +25oooo----_ 500000----6 _ _
23619 c2_ 7873 AtF ,5121AtF(__ _+) + + (p_- _+)

20000 3-_-0 _" " 10000

'- = _3 = reconstruct_p (+, p(a))c23 reconstruct_p' (-, p(3)) , ,+

6127 (1_ _ 7873 (2)c9+1 = lp'_+ 1---AtF(p_)-,_+)+ + AtF(p_-,02_+)+3--0--_P5 lo 3o--__'"

_ _ [ t- v+\
I_(3)+ AtF [p3 ,_3 )

+ 3

Remarks.

1. The smoothness measures (2.14) are not the same as those used in [15, 16].

There, a different normalization of the derivatives was used. Our smoothness

measures are approximations to the sum of the L2-norms of the first and second

derivatives of the interpolant on a stencil. In the cases we tested our smoothness

measures produced comparable or smaller errors when compared with [15]. We

include a comparison between the results obtained with both forms of the

smoothness measures in Section 4.1.1.

2. From obvious reasons, the interpolant (2.10) is identical to the one used in the

upwind method of [15]. As far as the scheme itself is concerned, there is some

degree of similarity between the semi-discrete central scheme and upwind

schemes. It is important to note that for linear advection problems they boil
down to the same scheme. Indeed, if H(s) = s, then H' = 1. Hence a+ = 1,

a_ = 0 and equation (2.7) becomes

d 1 [a+H (_'i-)] = -P'_-" (2.16)
dq_ (t) - a7

Solving (2.16) is equivalent, t.o solving

d _HLF ,-d_J (_): (_'?,_ ),

with the Lax-Friedrichs flux

= - _ (_'J - ¢,_-)= _ .
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.

For this reason the schemes in [19] are called "central-upwind schemes". Even in

this case of a linear advection problem, there still are some differences between

our scheme (Algorithm 2.1) and the scheme in [15]: the ODE solvers and the
smoothness measures are different. For more complicated Hamiltonians the

semi-discrete scheme (2.7) is different than the scheme in [15]. A comparison

between numerical results obtained with both schemes can be found in Section 4.

One can easily create a third-order semi-discrete central scheme from the general

one-dimensional formulation (2.7) by using a less accurate ODE solver and a

third-order interpolant. Indeed, a third-order version of the right-biased

(derivatives of the) interpolants can be written as a combination of two

polynomials, _},i with j -- i, 2, that are constructed on the stencil

{xj+i-2, ..-, xj+_} (compare with (2.9)). A straightforward computation shows

that

_1,i = lim - +T gi-l+(--2T)_i+ +T _i+1
r_0 _XX

1

-- 2AX (_iq-1 -- _i--i) ,

0 LXX

i

O_ (x_+_-)/Ox + 0 ((Ax) 2) for T # 0 and j = 1, 2. The combinationsatisfies _},_ =

1 2 -- 6T ÷ 3"i-2 1 -1 + 37 -2 ] 2 , 1 ,_',_ = lim --- ' =,--o 3 --]-+-[_V _1'_ + 3 ----1-+ _ _2,i _1,i + _2,i

satisfies _'c,_ = 0_ (x_+_)/Ox + O ((Ax)3). The left-biased interpolants can be

easily derived by symmetry considerations.

3 Multi-Dimensional Schemes

3.1 A General Multi-Dimensional Scheme

Consider the d-dimensional HJ equation of the form

Or+ H(v,)= 0 :g= ,S)) (3.1)

subject to the initial data 0(i, t = 0) = 00(:g)-
For simplicity we assume a uniform grid in space Ax (1) ..... Ax (d) = Ax. We set

c7 = (a_, a2, .. •, ad) E Z d, and let :go = AxcT, such that the k-th coordinate of :go equals

x (k) = Axa (k), V1 < k < d. For example, in the conventional three-dimensional notation

with indices i, j and -k and components (x, y, z), (7 = (i, j, k) and :go = (x_, yj, zk).
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Similarly to the one-dimensional setup, cp2 will denote the approximation of ¢ (xo, t_),

and for a fixed time t _, V_2o will denote the approximation of V¢ at xo.

d [ X(k)+-_ -_] and estimate theGiven _o, we define the volume Co = @k=l x(_k) _'=2 '

local speeds of propagation %._-_For example, for a convex Hamiltonian these speeds in

the coordinate direction k are given by

{O0-_k) } a_ )- min{ cqO@k) }_(k)+= max (Vcpo) 0 = (V_o) 0 . (3.2)
tta C_ _ ' Ca '

Let fi = (p(1),..., p(d)) denote the multi-index with components p(k) E {+,-}, Vk. Vv'e

also denote the index opposite to fiby fi, i.e. fi = -_= (_p(1),..., _p(d)), assuming the

standard algebraic operations between elements in Z. For any given fiwe define a vector
that encodes the maximum estimated speed of propagation in all coordinate directions

at xo as

=p = (p(1)a(1)oI1) p(d)a_)P(d) ) (3.3)V o ,... , .

We then denote by x_+p the position _o + g_At, and denote the approximation of ¢ at

x%+p by _5o+p.
/" (1)+ (2)- (a)+'_ ~-

For example, if d= 3 and iT= (+, -, +), then t,_ = [,a_ , -ao ,ao ) andv_ =

( (2)+ _a_)-)-a (1)-, ao , . In this case

_+p ¢(x_ ) +a(1)+At, x_ ) a(2)-At x (3) + a_)+At)

Similarly to the one-dimensional case, we assume that the approximate solution at

time t _, p2 is given, and that a continuous piecewise-polynomial interpolant _5(i,t '_)

was reconstructed from _2. The construction of _?(i, t') will be addressed below. The

interpolant _?(:g, t_) is then evolved to the next time step, t _+1, at the points :go+p, which

are located away from the propagating discontinuities assuming that the time step At

is sufficiently small. According to (3.1), to first order in time, this evolution is given by

the Taylor expansion

t = c) -/xts (io+,, + o (Ate),

where V_? (2%+p, t _) is an approximation of the derivative V¢ at 2%+,.

A fully discrete central scheme can then be constructed by computing a weighted

average of the evolved solution ¢(io+p, t _+1) for all values of fi (compare with the one-

dimensional case (2.4)). The volume of the d-cube enclosed by 2_+p for all values of fi

divided by At is

d

I/_ = I-I _ (k)+[% + a(k)-) .
k=l

For a given fi, the volume enclosed by the corners S_+p and i_ divided by At is given

by the product of the components of v-_

d

k=1
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x ,p,

Figure 3.1: A two-dimensional example of the objects associated with the location i,,+p
for g= (+,-). The complement location i_+_ is shown, as well as the volumes and

The thick rectangle encloses the volume V_.

Clearly, _)-_'_pI_r_] = V_. See Figure 3.1 for a sketch of the two-dimensional setup. An
/:g tn+l_approximation of the solution p2 +1 is then obtained by averaging over all _5_ _+o, J-

Each term corresponding to a particular fiis weighted by the diagonally opposite volume

I/;21, divided by _. Hence

_2+1 1 p+_) (3.4)

p

1

p

W'e now use a Taylor expansion in space

where V_5 (_+o, t') is the evaluation of the gradient at 2_ associated with the recon-

struction at _+p in the appropriate volume. Hence (3.4) can be written as

At

_[+1 = _:2 +_--_lff_l[g_ V%(2_+, ,t")-H(V_(:g_+p't'_))]
p

In the limit At -_ 0 we obtain our first form of the semi-discrete d-dimensional scheme:

t 1 (3.5)
-_:_( )- V_(t) _--_ [_(t)l [_2 Vg:_+o(t) - H (VO_+o(t))]

p
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= 1-Id=l (a_)+ + a_ )-) k=l [_7_p. V_+p(t)- H (V_5_+p(t))].

To obtain a simpler formula, we let, for p(k) = ±, _x_(k)= limz_t_o O0(xs+p)/Ox(k), the

k-th component of V_ (i_+p). Such a limit makes sense assuming that the reconstruction
of the derivatives is done direction-by-direction. Then the first sum on the RHS of (3.5)

becomes

d d
1

-- as p %E E I-I (5)#)
k----1 p j=l

d d

1 a_)p(_) / (k)+ + _ a(a)-,_-.: -- _,a a _z(k) )

k=l p j=l

d d

Vs E'gk)+a(k)-(_;_+k)- _;;(k))E II a_)'(_)
k=l P J =17_k

d a(j)_(J)
d (k)+ (k)- Ep 1-Ij=l_k

=E asa_ ( )k=l a, + 1-Is=l#k a_)+ a_)-

d (k)+ (k)-

E as am
k=l a(_k)++a_)- (Px+(k) P;(k))

This gives the semi-discrete d-dimensional scheme

d .,(k)+.7(k )-

d t 1 __ _s _ _- (3.6)

p k=l a_ +

Remar]_s.

1. The &dimensional semi-discrete scheme (3.5) is valid for any reconstruction of

V_, including reconstructions defined on d-dimensional stencils (for
two-dimensional examples see [6]). In contrast, (3.6) is valid only for

dimension-by-dimension reconstructions such as those described in Section 3.3
below. These dimension-by-dimension reconstructions are natural in the

semi-discrete setting, as they significantly simplify the form of the scheme.

2. As in the one-dimensional case, (3.5) and (3.6) are independent of the order of

the reconstruction. First- and second order- reconstructions can be found, e.g.,

in [191. In Section 3.3 we develop a fifth-order dimension-by-dimension
reconstruction following the one-dimensional reconstruction of Section 2.2.

3. Proof of the monotonicity of the flux approximation in (3.6) can be obtained via

the method of proof of theorem 2.1 applied to each component. This becomes

particularly transparent when (3.6) is written out as in Section 3.2 below. Such a
(k)+ OH 0 }proof cannot directly use the definitions a_ = maxc_ { (Vp_) etc.
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where the maximum is taken over the spatial domain Ca (see (3.2)). We must

translate this definition into a maximum over the range of function values. For

example, in two dimensions, we define

a+= max {H_:(u,v),O}, a-
_eI(_-,_+)

c<v_<'D

min {Hx(u,v),O}
,,el(_-,_+)

C<v<'D

b+ = max {Hy(u,v),0}, b- =
.a<_*<B

veI(.-,_+)

rain {Hy (u, v), 0}1,A<u<B

_e1(v- ,,+1

.

.

where [A, B] is the range of u and [C, D] is the range of v. With such a choice of

a and b (and similarly in more than two space dimensions) the multi-dimensional

flux approximation is monotone.

The limit limAt-_0 V_(i_+p) depends on f. Its value is estimated from the

reconstruction that corresponds to f.

When a(_k)+ and a(k)- are replaced by a(_k) = maxco {I OH (V_9o)I}

v_ = 2d _ a_ ) = 2dl_l In this case the semi-discrete scheme (3.6) becomesHk=l

d

d t 1 V -_ 1 +
_-_2_( ) = -_-_ E H (p_+p) + _ E a_k) (_2x(k, - _-(k,) •

p k=l

(3.7)

A simpler one- and two-dimensional version of (3.7) was presented in [20] with a
less accurate estimate of the local speed of propagation, a = maxk a (k).

6. In practice, the speeds of propagation is estimated from the reconstruction of

V_?2+p, i.e.,

a(k)+ { O0@(k) } a(k)_ {OH (V_?o+p),0}.= max (V_5_+p) 0 , = min 9-_
p ' p

a+ max{H=_+ _ 0}= [_, _y ) , ,
_,3 :t:

1,3 ' '

3.2 Two and Three Dimensional Schemes

For convenience, we write out (3.6) in two and three dimensions. In two dimensions we

let a = (i, j) with coordinate notation (xi, yj), and let the local speeds of propagation

a± b± (a_)+ a_ )+)be ( ,,0, _,a) := ' . Explicitly, for convex H we use the estimates

I I

a_5= m in{Hx(_,_?),0} , (3.8)

b:,j=
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where the max and min are taken over all permutations of +. Then (3.6) becomes

(suppressing the indices i, j)

dp

dt

a+a - b+b -

(a+ + a-) (_+_ - _;) + (b ÷ + b-) (_+_ - _;) (3.9)

a-b-H (_+, _+) + a+b-H (_7, cP+) + a-b+H (_+, _-_) + a+b+ H (_7, _-y)

(a + + a-)(b + + b-)

4-
If we replace a+i,_and - by ai,j = max4- ]{H_ (_, _ ) }1 and similarly b+, and b[jaij _ _,_ ,

4-
by bi,¢ = max+ I{Hy (c2_,_y)}l, then (3.9) can be further simplified to (compare with

[20,Eq. (5.1o)])

dt 2
1
4 [H (,._+ p+) " H (_-,'_+_ _- H (_+, _p;) -_ H (_;,_#_-)] .---- \Yx ; ' YY / ' '

(3.10)

In three dimensions, we let a = (i, j, k) with coordinate notation (x_, yj, zk), and let

the local speeds of propagation be (ai,j, k, bi,j, k, c + _1)4- _(2)± . Thus a and

b are the obvious generalization of (3.8), and c is estimated as

, , - = (_,_,_),0)c+j,k=max{H_(_f,p_,_) O) ci,j, k min{Hz 4- 4-
4-

Then the semi-discrete scheme becomes (suppressing the indices i, j, k)

d_

dt
_ 1 (3.11)

(_÷+ a-)(b+ + b-)(_+ + c-)
+ + + + -

. [a-b-c-H (_, _, P+z) + a-b-c+H (_, Py, c27) + a-b+c-H (_+' _y' _+)

+a-b+c+H (c#:_,py,_o-_) + a+b-c-H (_2-x,p+,_ +) + a+b-c+H (_;,' + _2-_)

+a+b + c-H (_;, _y , 09) + a+b +c+H (°22, _ , _-)]

a+a- _ . -x b+b- _ + -_ c+c- [ + -_

(a4-+a-) _;-_ + (b++_-) _-_ + (c++c-) '_-_'

The three-dimensional scheme (3.11) can be further simplified by replacing a+w, a_,j- by

a_,j and b-? b[y by b_y similarly to the two-dimensional case., and also replacing c#.w,c[j

by ci,3 max± ]{Hz _ 4- '_4-= _._,w_, _) }l In this case

dt T (_7-_-;)+ (_;-_-;)+_ ,_z -

+ + g +1 [H(p+,_,p+) +H(_+ _2_,p_-)+ (_2_,_;,p+)+H(_+ c2;,p_-)
8

- + + ,+H(_, _, _2+) + H(_-, _, _]) + H(_;, _%, _+) + H(_:], _2_, _;-)] .

(3.12)
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3.3 A Dimension-by-Dimension 5th-order Reconstruction

The reconstructions V_+p can be easily computed in a direction-by-direction manner.
Such a direction-by-direction reconstruction is commonly used in upwind schemes [15],

and we have used this strategy with central schemes in [6]. Here we show a three-

dimensional example; generalizing this technique to more dimensions is straightforward.

Using the notation of Section 2.2, a three-dimensional fifth-order reconstruction is

• For each j, k: 99_ = reconstruct_99' (±, P,,j,k)

_± = reconstruct__2' (±, _,.,k)• For each i, k: _y

• For each i,j: 99_ = reconstruct_99' (±, 99_,j,.)

where the subscript '*' denotes the full range of an index: 99.,j,k denotes the array

(Fl,j,k,..., _N,j,k), etc. We denote this operation in three dimensions as

± = _, p_) = reconstruct._V_2 (±, _). (3.13)

99±The results of this operation are three-dimensional arrays with elements ( _)_,j,k,
± ±

(Py)i,j,k and (99z)i,j,k"
Using this notation, we can turn Algorithm 2.1 into a three-dimensional scheme:

replace reconstruct__' (±, _) with reconstruct_V_ (±, p), and let F denotes the right

hand side of (3.11). Applying this modified version of Algorithm 2.1 to each grid node

gives a three-dimensional scheme that is fifth-order in space and fourth-order in time.

4 Numerical Simulations

In this section we present simulations that demonstrate the features of the schemes we

developed in the previous sections. The scheme we test is the fifth-order semi-discrete

method in one (Section 4.1), two (Section 4.2), and three (Section 4.4) space dimensions.

Some of these examples are standard test cases that can be found, e.g., in [20, 28, 32].

In Section 4.3 we present a numerical stability study in two space dimensions.

We do not follow the practice in [15] of masking singular regions from our error

measurements, as we prefer to include the entire domain in our error estimate.

4.1 One-Dimensional Examples

A convex Hamilton±an

\Ve start by testing the performance of our schemes in a convex problem. We approxi-

mate solutions of the one-dimensional equation

1
at + _ (0_ + 1)2 = 0, (4.1)

subject to the initial data O(x, 0) = -cos(Trx) with periodic boundary conditions on

[0, 21. The change of variables, u (z, t) = ¢_ (x, t) + 1, transforms the equation into
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the Burgers' equation, ut + 1 (u2)x = 0, which can be easily solved via the method of

characteristics [32]. The solution develops a singularity in the form of a discontinuous

derivative at time t = 7r-2.
The results of our simulations are shown in Figure 4.1. The order of accuracy of

these methods is determined from the relative L 1 error, defined as the Ll-norm of the

error divided by the Ll-norm of the exact solution. These results along with the relative

L_-norm before the singularity at T = 0.8/7r _, and after the singularity at T = 1.5/rr 2

are given in Table 4.1.

[ tN relative L _-error

100 2.78x10 -6

200 U 9.89 x 10 -s

400 I 3"20x 10-9
800 1.01x10 -1°

,4

N relative L 1-error

100 2.04x10 -4

200 7.21 x 10 -7

400 2.64x10 -5

800 2.55x10 -5

Core singularity T = 0.8/7c 2
L _-order

p

4.81

4.95

4.99

relative L_-error

5.74x10 -7

1.14x10 -s

1.92x10 -1°

3.04x10 -12

L°°_order

5.65

5.90

5.98

fter singularity T = 1.5/7r 2

L l-order relative L °c-error I L _-order []
- 2.02 x 10-4

9.60 8.15 x10-7

-5.19 -5.19 xl0-a

0.05 0.05 x10-5

9.60

-6.65

0.10

Table 4.1: Relative Ll-errors for the one-dimensional convex HJ problem (4.1) before

(T = 0.8/7c 2) and after (T = 1.5/7r 2) the singularity formation.

A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations. In one dimension

we solve

Ct - cos (¢x + 1) = 0, (4.2)

subject to the initial data ¢ (x, 0) = -cos (7rx) with periodic boundary conditions on

[0, 2]. In this case (4.2) has a smooth solution for t < 1.049/7r 2, after which a singularity
forms. A second singularity forms at t _ 1.29/7r 2. The results are shown in Figures 4.2.

The convergence results before and after the singularity formation are given in Table 4.2.

Remark. Tables 4.1 and 4.2 show that after the singularity formation the order of conver-

gence deteriorates. In the following examples we will see that while a close examination

of the convergence properties confirms this observation, in all the cases we examined,
the error of the fifth-order semi-discrete scheme is less than the error of the other two

published fifth-order methods for HJ equations [6, 15].



18 S. BRYSON AND D. LEVY

io

0_

a_ 04 oe oa 1 )2 14 is _a

o8 , , ,

°i
_0_2

-06

-0a O O O

2 02 04 0S ae _2 14 16 18

Figure 4.1: One-dimensional convex Hamiltonian (4.1). Left: the solution before the

singularity formation, T = 0.8/7r 2. Right: the solution after the singularity formation,

T = 1.5/7r 2. N = 40. The rift.h-order approximation is plotted on top of the exact

solution.

N

100

2OO

4OO

8O0

Be

relative L 1-error

1.20x10 -6

5.29x10 -8

2.14x10 -9

8.24x10 -1]

rote singularity T = 0.8/_ -g
L _-order relative L_-error

_ 4.24×10 -_

4.50 2.18x10 -s

4.62 6.06x10 -1°

4.70 1.17x10 -n

fter singularity T = 1.5/7r 2

N relative L 1-error Ll-order

100 1.91x10 -5 -

200 4.98x10 -5 -1.38

400 2.91x10 -6 4.10

800 4.20x10 -6 -0.53

L_-order

4.28

5.17

5.69

relative L_-error L_-order

3.52x10 -a

4.27x10 -5

2.47x10 -6

3.63x 10 -6

-0.27

Table 4.2: Relative Ll-errors for the one-dimensional non-convex HJ problem (4.2)

before (T = 0.8/7r 2) and after (T = 1.5/_r 2) the singularity formation.
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' i i ' ' ! ] ' !O2 O4 Oe O_ _ 12 _' I_

" i -o=.......I
I

02 O_ O_ Oa I 12 I_ 16 la

Figure 4.2: One-dimensional non-convex Hamiltonian (4.2). Left. The solution before

the singularity formation, T = 0.8/rr 2. Right. The solution after the singularity forma-

tion, T = 1.5/7r 2. N = 40. The fifth-order approximation is plotted on top of the exact

solution.

4.1.1 A comparison with existing fifth-order WENO-based methods

In Figure 4.3 we compare the error of our new fifth-order semi-discrete scheme (Algo-

rithm 2.1) with our fully-discrete scheme [6], and with the upwind WENO method of

[151 (with a local Lax-Friedrichs flux). We also present results obtained with the method

of [15] where the local Lax-Friedrichs flux was replaced by the semi-discrete central flux

(2.7), which compares our smoothness measures with those of [15].
We see that before the singularity formation the Ll-error of our semi-discrete method

is as much as an order of magnitude smaller than the Ll-error of the methods in [6] and

[15]. The method of [15] with the flux (2.7) yields somewhat smaller errors for large grid

spacing for the convex Hamiltonian, but becomes comparable to our method as the grid

spacing decreases. For the non-convex Hamiltonian the method of [15] with flux (2.7)

has larger errors than Algorithm 2.1. We take this as indication that the smoothness

measures in [15] may be slightly better for large grid spacing and some Hamiltonians.

After the formation of the singularity the behavior of the error in both methods that

are based on the flux (2.7) is more erratic than the other two methods. Nonetheless,

the methods that use the flux (2.7) have errors that are sometimes dramatically smaller

than the other two methods. At no time is the error of methods using the flux (2.7)

larger than that of the other two methods. Further comparisons are done in the next

example and in Section 4.3. A theoretical study of the convergence of these schemes is

beyond the scope of this work and is left for the future.

A linear advection equation

In this example ([15] with a misprint, corrected in [34]) we solve the one-dimensional

linear advection equation, i.e., H (@_) = ¢_. We assume periodic boundary conditions
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10 .2

10 .3

10 -4

10.5
,...

104

10_

10"a

10 -9

10 4C'

10 _

convex H, T=0.8,,_ 2
10 .2

10 -3

10 4

_1

am

-_ 104

10 "_

convex H, T=1.5_ 2

T

10.7 , ....
1 02 103 1 01 102 103

10 .2

10 .3

104

8 10"5

-j 10-6

10 .7

10 .8

non-convex H, T=O._ 2

10 .2

10 .3

104

m
10 .5

106

10 -7

non-convex H, T=1.5/_ 2

10 .8

101 1 02 1 03 10 _ 102 1 03

number of points number of points

Figure 4.3: Convergence results for the convex Hamiltonian (4.1) (top) and non-convex

Hamiltonian (4.2) (bottom). The relative Ll-error are plotted against the number of grid
nodes. "x": our semi-discrete fifth-order method (Algorithm 2.1). "+": the fifth-order

method of [6]. "o": the fifth-order method of [15] with a local Lax-Friedrichs flux. "<>":
the fifth-order method of [15] with the flux (2.7). Left: Before the singularity. Right:

After the singularity.
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on [-1, 11, and take the initial data as 6 (x, 0) = g (x - 0.5) on [-1,1], where

(____ 9 2_)(x+l)+h(x)g(_)=- +_+5-

2cos( x2) _
3/2 + 3 cos (2_-z),

h(x) = 15/2 - 3cos (27cx),

(28 + 47c + cos (3rrx))/3 + 67rx (x - 1),

1
-I < x < -g,
-1- <x<0,

3
1

0<x<g,
1
5<x<l.

(4.3)

The results of our semi-discrete fifth-order method (Algorithm 2.1) are shown in Fig-

ure 4.4, where it is compared with the fifth-order methods of [6] and [15]. The semi-

discrete method (Algorithm 2.1) shows reduced dissipation compared to the method in

[15]. In [6] we showed that the fully-discrete fifth-order method we developed there is
more stable than the method of [15] from the point of view of being able to use larger

time steps. The numerical results here are based on fitting to each scheme its optimal

time-step, hence the reduced dissipation for the fully-discrete scheme [6].

4.2 Two-Dimensional Examples

A convex Hamiltonian

In two dimensions we solve a problem similar to (4.1)

1 (4.4)
Ct+ _ (¢x + ¢y + 1)2 = 0,

which can be reduced to a one-dimensional problem via the coordinate transformation

(() :(1/277 1/2 -1/21/2 ) (x) "Theresults°fthesec°nd-°rdercaleulati°nsf°rthey

initial data ¢ (z, y, 0) = - cos (_(x + y)/2) = - cos (Try) are shown in Figure 4.5. The

convergence rates for the two-dimensional fifth-order scheme (3.9) before and after the

singularity are shown in Table 4.3.

A non-convex Hamiltonian

The two-dimensional non-convex problem, which is analogous to the one-dimensional

problem (4.2), is

0, - cos(¢x+ ,y + 1) = 0. (4.5)

-- '2V_reassume the initial data _ (x, y, 0) = cos (_r(x + y)/ ), and periodic boundary con-

ditions. The results are shown in Figure 4.6. The convergence results for the two-

dimensional fifth-order scheme (3.9) before and after the singularity formation are given

in Table 4.4.
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Figure 4.4: One-dimensional linear advection, (4.3). T = 2,8, 16, 32. N = I00. "x":

our semi-discrete fifth-order method (Algorithm 2.1). "+": the fifth-order method of

[6]. "o": the fifth-order method of [15] with a local Lax-Friedrichs flux. In the bottom

two pictures we zoom on two of the peaks in the solution at T -- 32.
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Before singularity T = 0.8/rr 2

N relative Ll-error Ll-°rder H relative L°°-error L_-order

50 3.38x10 -5 - 3.66x10-7 -

100 1.90x10 -6 4.15 5.30x10 -9 6.11

200 7.35x 10-s 4.69 6.02x10 -n 6.46

After singularity T = 1.5/7c 2

N H relative L 1-error Ll-order relative L_-error L°°-order
50 8.68x 10 -4 - 1.60x10-5 -

100 3.06x10 -4 1.50 2.88x10 -6 2.47

200 2.77x10 -_ 3.46 8.29x10 -s 5.12

Table 4.3: Relative L 1- and L_-errors for the two-dimensional convex HJ problem (4.4)

before and after singularity formation, computed with (3.9) integrated in time as in

Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.

.I.

-2 " "

•I " 2

15

0 0 05 1

Figure 4.5: Two-dimensional convex Hamiltonian, (4.4). Left: the solution before the

singularity formation, T = 0.8/7r 2. Right: the solution after the singularity formation,

T = 1.5/7c 2. N = 40 × 40. The solution is computed with (3.9) integrated in time as in

Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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Before singularity T = 0.8/7r 2

NI[ relative L 1-error
50 1.70x10 -5

100 1.69x10 -6

200 8.16x10 -s

L 1-order

I

3.33

4.37

relative L_-error L °%order

6.04x10-s

5.20 x 10 -9 3.54

1.17×10 -1° 5.47

After singularity T = 1.5/7r 2

N ][ relative Ll-error Ll-order relative L_-error
50 2.63x10 -3 - 9-55z10-_

100 3.40x10 -4 2.95 1.52x10 -6

200 7.20x10 -_ 2.24 2.72x10 -_

L _-order

2.65

2.49

Table 4.4: Relative L 1- and L_-errors for the two-dimensional non-convex HJ problem

(4.5) before and after the singularity formation, computed with (3.9) integrated in time

as in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.

1,5,

I,

05,

O,

-05.

-2"

Figure 4.6: Two-dimensional non-convex Hamiltonian, (4.4). Left: the solution before

the singularity formation, T = 0.8/7r 2. Right: the solution after the singularity forma-

tion: T = 1.5/_ 2. N = 40 x 40. The solution is computed with (3.9) integrated in time

as in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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A fully two-dimensional example

To check the performance of our method on fully two-dimensional problems we solve a

test problem which we introduced in [4]:

Ct + ¢_8y = 0, (x, y) E [-_, 7r] x [-7r, n], (4.6)

subject to the initial data ¢ (x,y,0) = sin (x) + cos (y) and to periodic boundary
conditions. The exact solution for this problem is given implicitly by ¢ (x,y,t) =

-cos(q) sin(r) +sin(q) +cos(r) where x = q-tsin(r) and y = r+tcos(q). This
solution is smooth for t < 1, continuous for all t and has discontinuous derivatives for

t > 1. The results of our simulations at times T = 0.8, 1.5, are shown in Figure 4.7.

For comparison we show in Figure 4.8 the results obtained for the same problem with

our fully-discrete method [6]. The convergence results for the fifth-order method (3.9)

before the singularity formation are given in Table 4.5 and confirm the expected order

of accuracy.

N

50

100

200

Before singularity T = 0.8

IJ relative L 1-error L l-ordeT II relative L_-error
2.39x10 -6 - 1.34x10 -s

8.52x 10 -s 4.81 1.40x 10-1°

3.05 x 10 -9 4.80 1.24x 10-12

L_-order

6.57

6.83

Table 4.5: Relative Ll-errors for the two-dimensional HJ problem (4.6) before the sin-

gularity formation. T = 0.8. The solution is computed with (3.9) integrated in time as

in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.

An eikonal equation in geometric optics

We consider a two-dimensional non-convex problem that arises in geometric optics [17]

Ct + V/¢_ + O_ + 1 --- O, (4.7)¢ (x: y, O) = i (cos (2_x) - 1) (cos (2Try) - 1) - 1.

The results of our fifth-order method at time T = 0.6 are shown in Figure 4.9, where

we see the sharp corners that develop in this problem.

An optimal control problem

We solve an optimal control problem related to cost determination [32]. Here the Hamil-

tonian is of the form H(x, y, V¢):

1 sin 2 (y) _ 1 + cos (x) = O,
¢t - sin (y) ¢_ + sin (x) ¢v + tCyl- 5 (4.8)
¢ (x,y, 0) = 0.

The result of our fifth-order semi-discrete scheme at time T = 1 is shown in Figure 4.10.
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2 21

l !I ( 4 _4

-2 "-. 3

4 -4 4 4

Figure 4.7: Fully two-dimensional Hamiltonian, (4.6). Left: the solution before the

singularity formation, T = 0.8. Right: the solution after the singularity formation,
T = 1.5. N = 50 x 50. The solution is computed with (3.9) integrated in time as in

Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.

z

i

_ _ 1/_2 3 "4

0 -I

4 "l'

Figure 4.8: The fully two-dimensional Hamiltonian computed with the method in [6]

after the singularity formation, T = 1.5. N = 50 x 50.
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0

i'i1-04

" -1.35,

-1.4.

.145,

-t,S •

+1,55.
1

I -I 6 i

0,8

02 0.6

O_ 0.6

0.6

1 0 1 0

Figure 4.9: Two-dimensional eikonal equation, (4.7). N = 40 x 40. Left: the initial

data. Right: our semi-discrete fifth-order semi-discrete approximation at T = 0.6.

3-2

0 -1

4 -4

Figure 4.10: Two-dimensional optimal control problem, (4.8). An approximation with
our semi-discrete fifth-order method (3.9) is shown at T = 1. N = 40 x 40.
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4.3 A Stability Study

In this section we present a stability study, checking the stability properties of the
two-dimensional semi-discrete fifth-order method. We compute the relative L 1 errors

for various examples while varying the CFL number. In Figure 4.11 we compare the
results obtained with our fifth-order scheme with the fully-discrete method [6], and

with the upwind method of [15] using a local Lax-Friedrichs flux. As expected, the

stability properties of the method (3.9) are similar to the stability properties of the

upwind WENO method of [15], though our new method (3.9) enjoys smaller L 1 errors

and hence is more accurate.

4.4 Three-Dimensional Examples

Finally, we solve a couple of three-dimensional problems with the scheme (3.11) inte-

grated in time as in Algorithm 2.1, with the fifth-order reconstruction (3.13). We start

with a convex problem

1 (4.9)
Ct+_(¢x+¢y+¢z+l) 2 =0,

subject to the initial data ¢ (x, y, z, 0) = - cos (Tr(x + y + z)/3). The convergence results

for the scheme (3.11) before and after the singularity formation are given in Table 4.6.

We also use (3.11) to approximate the solution of the non-covex problem

Ct - cos(¢_+¢y÷¢z + 1)=0, (4.1o)

with the same initial data. The convergence rates are shown in Table 4.7.

Before singularity T = 0.5/7c 2

N [] relative L 1-error

25 1.04x10 -4

50 6.52x10 -6

100 3.74x 10 -7

L 1-order

3.99

4.12

relative L_-error

3.10xlO -s

2.66x10 -1°

2.02x10 -12

After singularity T = 1.5/772

N II relative Ll-error L 1-order relative L_-error
25 1.40×10 -a - 9.76x10 -G

50 1.80×10 -4 2.95 4.15x10 -6

100 1.26×10 .4 0.51 6.94x10 -7

L_-order

6.87

7.04

L°C_order

1.23

2.58

Table 4.6: Relative L 1- and L_-errors for the three-dimensional convex HJ problem

(4.9) before and after the singularity formation, computed with (3.11) integrated in

time as in Algorithm 2.1, with the fifth-order reconstruction (3.13).
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x 10 -6

2

1.5

0.5

linear advection, T=I

0 0.2 0.4 0.6 0.8 1

X 10 -_

4

3

"J2

1

convex H, T=0.8/t_ 2

0 0.1 0.2 0.3 0.4 0.5

x 10 -s non-convex H, T=0.8/_ 2

3

0 0.5 1 1.5 2

CFL

1.5

0_5

x 10 .6 fully 2D H, T=0.8

5/

v

0.8

0.6

o.4

0,2

0
0 0.5 1

10 -3 convex H, T=1.5h'[ 2

1

0

0

1.5

0.05 0.1 0.15 0.2

x 10 .4 non-convex H, T=1.5/_. 2

0.25

OCO000_

0 0.5 1 1.5 2

CFL

Figure 4.11: Stability of the two-dimensional semi-discrete methods. N = 100 x 100.
"x": our semi-discrete fifth-order method (3.9). '_+": our fully-discrete fifth-order

method [6]. "o": the fifth-order upwind method of [15] with a local Lax-Friedrichs

flux. Upper left: linear advection with initial condition 4)(z, 9, 0) = - cos (Tr(z + y)/2).

Upper right: fully 2D Hamiltonian (4.6). Middle row: convex Hamiltonian (4.4): be-

fore the singularity (!eft) and after the singularity (right). Bottom. rosy: non-convex

Hamiltonian (4.5), before the singularity (left) and after the singularity (right).
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N

25 9.10x10 -S

50 3.85 x 10 -6

100 1.77x10 -r

Before singularity T = 0.5/_ 2

II relative L 1-error L 1-order II relative L°°-error L_-order

After

N II relative L 1-error
25 9.99x10 -4

50 1.09x10 -4

100 1.07x 10 -5

_ 2.58x10 -s

4.56 2.27x10 -1°

4.45 1.53x10 -12

singularity T = 1.5/u 2

L l-°rder II relative L_-error

3.20

6.60 × 10 -7

5.25×10 -_

3.34 6.13×10 -s

6.83

7.21

L °_-order

0.33

3.01

Table 4.7: Relative L 1- and L_-errors for the three-dimensional non-convex HJ problem

(4.10) before and after the singularity formation, computed with (3.11) integrated in

time as in Algorithm 2.1, with the fifth-order reconstruction (3.13).

Appendix A" A Proof of Theorem 2.1

Proof. Let H (_) E C 2 be convex (H"(u) > 0 or H" (u) _< 0). We need to show that
the flux

a +a- (u+_-)
1

F(3 ()lLa-H_u+j +a+H u-jj a+ +a -H KNP (u, +, U-) -- a+ + a-

is a non-increasing function of u + and a non-decreasing function of u-. Here a + and

a- are defined as

a+= max {H'(u),O},a-= min [{H'(u),0}l,
u¢l(u-,u+) u¢I(u-,u +)

where I (a, b) is the closed interval with endpoints a and b.

The proof for u + is discussed in detail. The proof for u- is similar.

Let u + > u_-. Define the difference

D H KNP (u+,u -) - HKNP (U+,U -)

[a_H(u +) +al +H(u-)] a ++o_ (u+-u-)

1 [a[H (u +) + a+H (u-)] + a_ + a_ (u+ - u-).+

We will prove that D _< 0. We rewrite the D as the difference

where for fixed u-

G (_)= A (u)[H (u)- H (u-) -a + (u)(u- u-)I,
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with

= , = min [{H'(u)0}[.a- (u) a+ (u) max {H' (u),0} a- (u) _e,(_-,_) 'A (u) = a+ (_+a- (u)' _e,(.-,_)

Since u_- > u_, the requirement D < 0 is equivalent to G' (u) <__0. Because H is

convex (so the extrema of H' on an interval occur at the endpoints of that interval),
a ± E C 1 so

G'(u) : A'(u)[H(u)-H(u-)-a+(u)(u-u-)]

+A (u) [H' (u) - a +' (u) (u - u-) - a + (u)]

Because H is continuous, there exists a _ (u) E I (u-, u) such that

H' (((u)) (u - u-) = H (u) - H (u-) so

G' (u) = .4' (u) (H' ({ (u)) -a + (u)) (u- u-) - A(u)a +' (u) (u- u-)

+A (u) (H' (u) - a+ (u))

= B (u) (u - u-) + A (u) (H'(u) - a + (u)),

where B (u) = A' (u) (H' (_ (u)) - a + (u)) - A (u) a+' (u).
Now

a + (u) a-' (u) - a- (u) a+' (u)

(a + (u) + a- (u.)) 2 '
A' (u) =

hence

1 a- r a+

= (a÷(u,)+ a- [a÷ (H' -
-a- (u) a +' (u) (H' (_ (u)) + a- (u))] .

We are now in a position to prove that D < 0. There are three cases to consider.

Case 1. u + > u + > u-. In this case u - u- > 0, and if ul > u2 then [u-, ull D [u-,u2]

so a ± (ul) _> a:L(u2) and a ±' (u) _> 0. Then

1 ['--'_'_-'0'[a+(u)a-' (u)(H' (_ (u))-a + (u))B = (a+ + a- _ _<o

a- (u)a +' (u) (H' (_ (u)) + a- (u))fi

-'_._, _ J <_ O,>_o >_o

so

B (u) (u- u-) A (u) (H' (u) - a + (u))
G'(u) = __+_" _ "_<0.

_<o _>o _>o __o

Case 2. u- > u + > u +. In this case u - u- _< 0, and if u 1 > _/2 then [u-, u,] C [u-, u2]

so a ± (u_) _< a ± (u2) and a +' (u) _< 0. We therefore have B (u) k 0 and

S(u)(u-u-) A(u)(H'(u)-a+(u))
G'(u) = __+_" -<o.

_>0 _<0 _>0 _<o -
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Case 3. u + > u- > u +. In this case the proof is much more direct: by the continuity

of H there exists a _1 E [u-, u +] and a _2 E [u_-, _-] such that,

a_a_
D = a_ +a_- (H'((1)-a+)(u+-u-) a + +a[

< 0.

__ (_,((_)-a_+)(u_-u-)

The proof that H KNP (u +, u-) is non-decreasing in u- is the same with

a+(u) [H(u)-H (u+)+a-(u)(u-,+)]
a (u) = a+(_) + a- (u)

forfixed u +.
[]
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